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Abstract

In this paper we give conditions on a space X to give a positive answer

to the question of whether or not all the derivations of the uniform Roe

algebra on a space X are inner. Specifically, if a space X has a metric

d under which (X, d) is a metric space with bounded geometry having

property A, then all derivations are inner.

1 Introduction

Uniform Roe algebras are constructed from a metric space (or coarse space) X

acting on `2(X). First we start with finite propagation operators in B(`2(X)).

In this context ”finite propagation” roughly means that, looking at an operator

T as a X × X matrix, the nonzero entries of T are a finite distance from the

diagonal. Thus, uniform Roe algebras reflect the coarse structure of a metric

space and allow us to study the large scale geometry of the metric space while

remaining ”small” enough to have interesting K-theory.

The theory of derivations have a rich history in both mathematics and

physics. The study of derivations on operator algebras arose in quantum me-

chanics. In the 1940’s mathematicians asked if Heisenberg’s commutation rela-

tions of momentum and position were given by bounded linear operators on a

Banach space. Given a Banach space E letting B(E) be the algebra of bounded

linear operators on E; for A,B ∈ B(E), δB(A) := ad(B) = [B,A] = BA− AB
defines a bounded linear operator on B(E) satisfying Leibniz rule. Thus, the

theory of commutators became an important part of the theory of derivations.

Naturally the question of whether or not all bounded derivations are of this

form, which we refer to as being ”inner”, is of concern. However, this is not the

case, even if we restrict to C*-algebras (see [4] for examples). On the other hand,

for the case of uniform Roe algebras, we will show that all bounded derivations

are in fact inner; that is, if our space X is sufficiently ”nice”.
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2 Preliminaries

For a Hilbert space H, we denote the space of bounded operators on H by

B(H). By `2(X), we mean the square summable complex sequences indexed by

X. For a Banach space A, we denote by A1 the norm closed unit ball of A. To

denote the canonical basis of `2(X), we shall use (ϑx)x∈X as we reserve δ for

derivations. The support of an operator T ∈ B(`2(X)) is defined as

supp(T ) := {(x, y) ∈ X ×X : 〈Tϑx, ϑy〉 6= 0}.

Definition 2.1. For a metric space (X, d) we say that an operator T has propa-

gation of at most R if 〈Tϑx, ϑy〉 = 0 whenever d(x, y) > R for all (x, y) ∈ X×X
and write prop(T ) ≤ R. The set of all operators of propagation at most R is

denoted as

CRu [X] := {T ∈ B(`2(X)) : prop(T ) ≤ R}.

The algebraic uniform Roe algebra is defined as

Cu [X] := {T ∈ B(`2(X)) : prop(T ) <∞}

and the uniform Roe algebra is defined as the norm closure of the algebraic

uniform Roe algebra; i.e.

C∗u (X) := {T ∈ B(`2(X)) : prop(T ) <∞}
‖·‖
.

Definition 2.2 (bounded geometry). Let (X, d) be a metric space. Then X is

said to have bounded geometry if for every R ≥ 0 there exists an NR ∈ N such

that for all x ∈ X, the ball of radius R about x has at most NR elements.

Remark 2.3. Note that, for a metric space (X, d) with bounded geometry,

Cb(X) = `∞(X) which we will use interchangeably. Additionally, we may view

an element a ∈ `∞(X) as an element T (a) ∈ C∗u (X) by setting

T (a)
xy :=

a(x) if x = y

0 otherwise

Moreover, ‖a‖`∞ = supx∈X |a(x)| = sup‖ξ‖=1

∥∥T (a)ξ
∥∥
`2

=
∥∥T (a)

∥∥. To keep

notation simple we will denote T (a) by a.

Lemma 2.4. Let (X, d) be a metric space with bounded geometry. Then there
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are at most 2NR − 1 (where NR ∈ N is from the previous definition) partially

defined bijections, say tn where n ∈ {1, . . . , 2NR−1}, such that for any x ∈ X if

d(x, y) ≤ R then there exists a unique n ∈ {1, . . . , 2NR−1} such that tn(x) = y.

Proof. Define E0 = ∅ and ER = {(x, y) ∈ X × X : d(x, y) ≤ R}. Then for

n ∈ {1, . . . , 2NR − 1} define En to be a maximal subset of ER \ ∪n−1
i=0 Ei such

that the coordinate projections π1, π2 are injective on En. Let π1(En) = An

and π2(En) = Bn Since π1 and π2 are injective on En we may define bijections

π1,n : En → π1(En) = An and π2,n : En → π2(En) = Bn.

Thus, we may define a bijection

tn : An
π−1

1,n−−−→ En
π2,n−−−→ Bn.

Next, suppose for contradiction that ER \ ∪2NR−1
i=0 Ei 6= ∅. Then there exists

a (x0, y0), where d(x0, y0) ≤ R such that for all n ∈ {1, . . . , 2NR−1}, (x0, y0) 6∈
En. Note that, given n ∈ {1, . . . , 2NR − 1} if (x0, y0) 6∈ En then there exists a

(x0, yn) ∈ En, yn 6= y0 or a (xn, y0) ∈ En, xn 6= x0

since En is the maximal subset of ER \ ∪n−1
i=0 Ei such that π1, π2 are injective.

Define

A := {yi ∈ BR(x0) : (x0, yi) ∈ Ei, yi 6= y0}, and

B := {xi ∈ BR(y0) : (xi, y0) ∈ Ei, xi 6= x0}

Since the En’s are disjoint by construction, yi 6= yj and xi 6= xj for all i 6=
j; i, j ∈ {1, . . . , 2NR − 1}. Note that A ⊆ BR(x0) \ {y0} and B ⊆ BR(y0) \
{x0}. Hence, since X has bounded geometry, |A| , |B| ≤ NR − 1. However, this

contradicts the maximality of the En’s since

(x0, yn) ∈ En, yn 6= y0 or a (xn, y0) ∈ En, xn 6= x0

can occur at most 2NR − 2 times.

Thus, given (x, y) such that d(x, y) ≤ R there exists an n ∈ {1, . . . , 2NR−1}
such that (x, y) ∈ En. Moreover, this n is unique since the En’s are disjoint.

Furthermore, for this n, tn(x) = y.
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Lemma 2.5. Let (X, d) be a metric space with bounded geometry. Then for

T ∈ CRu [X] we have

‖T‖ ≤ sup
x,y∈X

|Txy| (2NR − 1)

Proof. Let An and tn be defined as in the previous lemma. Define a partial

isometry, vn : `2(X)→ `2(X) by

vn : ϑx 7→

ϑtn(x) if x ∈ An
0 otherwise

For T ∈ CRu [X] define fn(x) = Tx tn(x) Then we may write T =
∑2NR−1
n=1 fnvn.

Thus,

‖T‖ =

∥∥∥∥∥
2NR−1∑
n=1

fnvn

∥∥∥∥∥ ≤
2NR−1∑
n=1

‖fn‖ ‖vn‖ ≤ sup
x,y∈X

|Txy| (2NR − 1)

Definition 2.6 (derivation). By a derivation on a C∗-algebra A we shall mean a

linear map δ : A → A that satisfies Leibniz’s rule. That is δ(ab) = δ(a)b+bδ(a).

Definition 2.7 (spatial). A derivation δ of a C∗-algebra A acting on a Hilbert

space H is spatial if there is a bounded operator h ∈ B(H) such that δ(a) =

ha− ah = [h, a] = ad h(a).

Definition 2.8 (Concrete C*-algebra). A concrete C*-algebra is a ∗-subalgebra

of B(H) that is closed in the norm topology.

Note that by Kadison [5] Theorem 4, every bounded derivation on a concrete

C∗-algebra is spatial. However, in our circumstance we are able to give a more

direct (but less general) proof by slightly modifying a proof of Kaplansky.

Theorem 2.9 ([?]). Every bounded derivation δ : C∗u(X)→ C∗u(X) is given by

[b, ·] for some b ∈ B(`2(X)) .

Proof. Let δ be an arbitrary derivation on C∗u (X), and let p ∈ `∞(X) ⊆ C∗u(X)

be the rank one projection onto the n’th coordinate of X. Define:

y := [p, δ(p)], and δ′(a) := δ(a)− [a, y] (1)
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Then, δ(a) = δ′(a)− [y, a]. Note that:

δ(p) = δ(p2) = pδ(p) + δ(p)p =⇒ pδ(p)p = 0, (2)

so that,

[p, y] = p
(
pδ(p)− δ(p)p

)
−
(
pδ(p)− δ(p)p

)
p = δ(p). (3)

Thus, δ′(p) = 0.

Next, since δ′(ap) = δ′(a)p for all a ∈ C∗u(X), the linear map ap 7→ δ′(a)p

is well defined on the left ideal C∗u(X)p. Note that for any a ∈ C∗u (X) , ap is

equivalent to an operator

T (ap)
xy :=

axy if y = n

0 otherwise

(recalling that p is the projection onto the n’th coordinate of X). Hence,

C∗u (X) p ∼= `2(X), and so the restriction of δ′ to C∗u (X) p, δ′ �C∗u(X)p, can

be identified with a bounded operator in B(`2(X)). Thus, there exists an

h ∈ B(`2(X)) such that hap = δ′(a)p. Hence,

haxp = δ′(ax)p = δ′(a)xp+ aδ(x)p = δ′(a)xp+ ahxp for all x ∈ C∗u(X)

=⇒ haxp− ahxp = δ′(a)xp =⇒ [h, a]xp = δ′(a)xp

=⇒ [h, a] = δ′(a)

Therefore, δ(a) = δ′(a)−[y, a] = [h, a]−[y, a] = [h−y, a] as was to be shown.

3 A Containment Condition

In this section we define a condition to determine when an element b ∈ B(H)

is in C∗u (X) by following [9] and [11] where H = `2(X) and X is a metric space

with bounded geometry having property A. Namely, for any b ∈ B(H)

b ∈ C∗u (X) if and only if [b, f ] = 0 for all f ∈ V L∞(X)1 (4)

where V L∞(X) will be defined in section 3.2. However, we will need some

definitions and several lemmas to prove this statement.
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3.1 Block Cutdowns

Lemma 3.1. Let (φj)j∈J be a family of positive contractions in Cb(X) such

that
∥∥∥∑j∈J φ

2
j

∥∥∥ < 1. Then for all b ∈ B(`2(X)) the sum
∑
j∈J φjbφj converges

strongly to an operator in B(`2(X)).

Proof. First we consider the case when b ≥ 0. Note that each φj is positive

and so each φjbφj ≥ 0. Thus, since finite sums of positive elements are again

positive,
∑
j∈F φjbφj ≥ 0 for all finite F ⊆ X. Moreover, for any finite sets

F1, F2 ⊆ X such that F1 ⊆ F2 we have∑
j∈F2

φjbφj −
∑
j∈F1

φjbφj =
∑

j∈F2\F1

φjbφj ≥ 0

so

0 ≤
∑
j∈F1

φjbφj ≤
∑
j∈F2

φjbφj whenever F1 ⊆ F2.

Next, since
∥∥∥∑j∈F φ

2
j

∥∥∥ ≤ 1 for all finite F , for ξ ∈ `2(X) we have

∥∥∥∥∥∥
∑
j∈F

φjbφjξ

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j∈F

φj ‖b‖φjξ

∥∥∥∥∥∥ ≤ ‖b‖
∥∥∥∥∥∥
∑
j∈F

φ2
jξ

∥∥∥∥∥∥ ≤ ‖b‖ ‖ξ‖ .
Thus, since the net of partial sums is increasing and bounded above,

∑
j∈J φjbφj

converges in the strong operator topology to an operator in B(`2(X)) .

For a general b ∈ B(`2(X)), by separating b into its real and imaginary parts

b = a+ ic, then separating its real and imaginary parts into their positive and

negative parts a = a+ − a− and c = c+ − c− we may write∑
j∈J

φjbφj =
∑
j∈J

φja
+φj −

∑
j∈J

φja
−φj + i

∑
j∈J

φjc
+φj − i

∑
j∈J

φjc
−φj .

By the positive case each of the sums on the right hand side strongly converges

to an operator in B(`2(X)) and so
∑
j∈J φjbφj converges strongly.

Definition 3.2 ([9], Definition 2.2). Let (X, d) be a proper metric space and

let H = `2(X). Given a family (ej)j∈J of positive contractions in Cb(X) with

pairwise disjoint supports, define the block cutdown map

θ(ej)j∈J : B(H)→ B(H) by θ(ej)j∈J (a) :=
∑
j∈J

ejaej
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Definition 3.3 (strong* topology). A net {aα} converges in the strong* topol-

ogy to a ∈ B(H) if and only if both

aα
SOT−−−→ a and a∗α

SOT−−−→ a∗

where SOT stands for the strong operator topology.

Definition 3.4 (L-Lipschitz). A function f ∈ Cb(X) is L-Lipschitz if for all

x, y ∈ X we have |f(x)− f(y)| ≤ L · d(x, y)

Before we continue let us fix the following notation:

For L, ε > 0, define

Commut(L, ε) := {b ∈ B(`2(X)) : ‖[b, g]‖ < ε for all L−Lipschitz g ∈ Cb(X)1}.

For a set G ⊂ B(H) we denote the commutant of G by G′; that is,

G′ := {T ∈ B(H) : TS = ST for all S ∈ G}.

Lastly, for a metric space X we say that a family (Yj)j∈J ⊆ X is R-disjoint if

d(Yj , Yi) > R whenever j 6= i.

Definition 3.5 (Conditional Expectation). Let B be a C∗-subalgebra of the

C∗-algebra A. A conditional expectation, E is a completely positive contractive

projection

E : A→ B such that E(b1ab2) = b1E(a)b2 for all b1, b2 ∈ B and a ∈ A.

Lemma 3.6 ([9], Lemma 4.1). Let G be a ∗-closed, strong* compact, commu-

tative subgroup of the unitary operators. Then there exists a unique conditional

expectation

EG : B(H)→ G′ such that:

i) The restriction of EG to the unit ball of B(H) is weak operator topology

continuous, and

ii) ‖EG(a)− a‖ ≤ sup
u∈G
‖[a, u]‖ for all a ∈ B(H)

Proof. Let a ∈ B(H) be fixed but arbitrary and define a map ϕa : G→ B(H)

by u 7→ u∗au. Endowing G with the strong* topology and B(H) with the weak

operator topology this map is continuous. Indeed, given ε > 0 let {un} be a net
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in G converging in the strong* topology to u ∈ G, and let φ ∈ H∗, ξ ∈ H be

fixed but arbitrary. Since un
sot−−→ u there exists n1, n2 such that

‖(un − u)ξ‖`2 <
ε

2 ‖φ‖ ‖a‖
and ‖(un − u)η‖`2 <

ε

2 ‖ξ‖ ‖a‖

whenever n ≥ n1 and n ≥ n2 where ‖η‖ = ‖φ‖ is given by the Riesz Represen-

tation Theorem. Thus,

|φ(u∗naunξ − u∗auξ)| ≤ |φ (u∗na)(unξ − uξ))|+ |φ ((u∗n − u∗)(auξ))|

≤ ‖φ‖ ‖(u∗na)(unξ − uξ)‖+ |〈(u∗n − u∗)(auξ), η〉|

≤ ‖φ‖ ‖u∗n‖ ‖a‖ ‖(un − u)ξ‖+ |〈auξ, (un − u)η〉|

≤ ‖φ‖ ‖u∗n‖ ‖a‖ ‖(un − u)ξ‖+ ‖a‖ ‖u‖ ‖ξ‖ ‖(un − u)η‖ < ε

2
+
ε

2
= ε

where the last line is given by the Cauchy-Schwartz inequality. Note that the

above also shows that the family {ϕa}‖a‖≤1 is weakly equicontinuous. Let µG

be the unique normalized Haar measure for G with the strong* topology. Since

our map ϕa is continuous we may define EG(a) to be the Pettis integral of ϕa;

that is,

EG(a) := WOT-

∫
G

u∗audµG(u).

Now we check that EG satisfies the conditions of being a conditional ex-

pectation. Recall that a Riemann sum for this integral has the form SP =∑n
i=1 u

∗
i auiµG(Gi) where the partition P is given by a finite collection {G1, . . . , Gn}

of disjoint subsets of G such that G = tni=1Gi and ui ∈ Gi. Observe that for

any Riemann sum and any f ∈ G,(
n∑
i=1

u∗i auiµG(Gi)

)
f =

n∑
i=1

u∗i auifµG(Gi)

= f

n∑
i=1

(uif)∗a(uif)µG(Gi) = f

n∑
i=1

(uif)∗a(uif)µG(Gif)

by the invariance of Haar measure. Since both of these Riemann sums converge

to WOT-
∫
G
u∗audµG(u), EG(a) commutes with every element of G for all a ∈

B(H). We now use this to show that EG is a projection. Observe that,

EG(EG(a)) = WOT-

∫
G

u∗EG(a)udµG(u)
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= WOT-

∫
G

u∗uEG(a) dµG(u) = EG(a)µG(G) = EG(a).

Hence, by [3], Theorem 1.5.10 we need only show that EG is contractive. Ob-

serve that,

‖EG‖ = sup
‖a‖≤1

‖EG(a)‖ = sup
‖a‖≤1

∥∥∥∥WOT-

∫
G

u∗audµG(u)

∥∥∥∥
≤ sup
‖a‖≤1

WOT-

∫
G

‖u∗‖ ‖a‖ ‖u‖ dµG(u) ≤ µG(G) = 1

Now we show that the restriction of EG to the unit ball (B(H))1 is weak op-

erator topology continuous. Recall that the family {ϕa}‖a‖≤1 is weakly equicon-

tinuous. Thus, given ε > 0 and ξ, η ∈ `2(X) there exists a δ1, δ2 > 0 such that

∣∣〈(u∗i aui − u∗jauj)ξ, η〉∣∣ < ε whenever

ui, uj ∈ {u ∈ G : ‖(u− v)ξ‖ < δ1} ∩ {u ∈ G : ‖(u− v)η‖ < δ2}

for any ‖a‖ ≤ 1. Hence, if

P = {Gi}ni=1,

n⊔
i=1

Gi = G and Q = {Gj}mj=1,

m⊔
j=1

Gj = G

are any two (finite) partitions of G such that each Gi ∈ P,Gj ∈ Q is ∗-closed,

and

uk, ul ∈ Gi, uk, ul ∈ {u ∈ G : ‖(u− v)ξ‖ < δ1} ∩ {u ∈ G : ‖(u− v)η‖ < δ2}

uk, ul ∈ Gj , uk, ul ∈ {u ∈ G : ‖(u− v)ξ‖ < δ1} ∩ {u ∈ G : ‖(u− v)η‖ < δ2}

(such partitions are possible sinceG is strong* compact) then on their refinement

K = {Gk}`k=1 we have∣∣∣∣∣∑̀
k=1

〈(
u∗k1

auk1
− u∗k2

auk2

)
ξ, η
〉
µG(Gk)

∣∣∣∣∣
≤
∑̀
k=1

εµG(Gk) = ε.

Thus, the integral defining EG when restricted to the unit ball of B(H) can
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be uniformly approximated in the weak operator topology by finite Riemann

sums. Moreover, for any partition P , the map a 7→
∑n
i=1 u

∗
i auiµG(Gi) is weakly

continuous. Hence, EG is weakly continuous on the unit ball of B(H).

We now show ii). First note that

‖[a, u]‖ = ‖u(u∗au− a)‖ ≤ ‖u∗au− a‖ and ‖u∗au− a‖ = ‖u∗(au− ua)‖ ≤ ‖[a, u]‖

for all u ∈ G so that ‖[a, u]‖ = ‖u∗au− a‖. Then, for any ξ, η ∈ H we have

|〈(EG(a)− a) ξ, η〉| = |〈EG(a)ξ, η〉 − 〈aξ, η〉|

=

∣∣∣∣∫
G

〈u∗auξ, η〉dµG(u)−
∫
G

〈aξ, η〉dµG(u)

∣∣∣∣ =

∣∣∣∣∫
G

〈(u∗au− a) ξ, η〉dµG(u)

∣∣∣∣
≤
∫
G

|〈(u∗au− a) ξ, η〉|dµG(u) ≤
∫
G

‖u∗au− a‖ ‖ξ‖ ‖η‖ dµG(u)

=

∫
G

‖[a, u]‖ ‖ξ‖ ‖η‖ dµG(u) ≤ sup
u∈G
‖[a, u]‖ ‖ξ‖ ‖η‖ .

Let ξ ∈ H and take ηξ = (EG(a)−a)ξ
‖(EG(a)−a)ξ‖ whenever (EG(a)−a)ξ 6= 0, then we have

‖(EG(a)− a)ξ‖ = |〈(EG(a)− a)ξ, ηξ〉| ≤ sup
u∈G
‖[a, u]‖ ‖ξ‖

for all ξ ∈ H. Thus, ‖EG(a)− a‖ ≤ supu∈G ‖[a, u]‖ for all a ∈ B(H) since a

was arbitrary.

Lastly, we show uniqueness. Suppose that E : B(H) → G′ is another con-

ditional expectation that is weakly continuous on (B(H))1. Then, for a ∈
(B(H))1 we have

EG(a) = E(EG(a)) (E fixes G′)

= E
(

WOT-
∫
G
u∗audµG(u)

)
= WOT-

∫
G
E(u∗au) dµG(u) (WOT-continuity of E �B(H)1

)

= WOT-
∫
G
u∗E(a)udµG(u) (G ⊆ G′ and E is a conditional expectation)

= EG(E(a))

= E(a) (EG fixes G′)

Thus, E = EG.

Corollary 3.7 ([9], Corollary 4.2). Let D ⊂ B(H) be an atomic abelian

von Neumann algebra. Then there is a unique conditional expectation ED :

B(H)→ D′ whose restriction to the unit ball is weakly continuous and satisfies
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‖ED(a)− a‖ ≤ supx∈D,‖x‖≤1 ‖[a, x]‖ for all a ∈ B(H).

Proof. Let 1D be the identity of D. Then, D is generated by a family of

orthogonal projections (pj)j∈J whose sum converges strongly to 1D. Define

G :=

∑
j∈J

(−1)αjpj : (αj)j∈J ∈ (Z/2)J

 .

Note that G is strong* compact as it is homeomorphic to (Z/2)J with the

product topology via ϕ(uα) = α where α = (αj)j∈J and uα =
∑
j∈J(−1)αjpj .

Hence, it satisfies the conditions of Lemma 3.6. Moreover, G generates D so

that G′ = D′. Thus, EG : B(`2(X)) → D′ is the conditional expectation with

the properties of 3.6.

Corollary 3.8 ([9], Corollary 4.3). Let:

1. (X, d) be a metric space with bounded geometry,

2. a ∈ Commut(L, ε) ⊂ B(H) for some L, ε > 0 where H = `2(X), and

3. (ej)j∈J be a family of positive contractions from Cb(X) with (2L−1)-

disjoint supports.

Define e :=
∑
j∈J

ej. Then,

∥∥eae− θ(ej)j∈J (a)
∥∥ ≤ ε

Proof. Set Aj = supp(ej) Then we may find a family of pairwise orthogonal

projections (pj)j∈J ⊂ Cb(X) where each pj is supported on Aj and acts as

the identity on ej . Define D to be the von Neumann subalgebra generated

by this family of projections where 1D is the strong limit of
∑
j∈J pj . Let

ED : B(H)→ D′ be the unique conditional expectation given by Corollary 3.7.

Note that since G is homeomorphic to (Z/2)J , if µΓ is the unique normalized

Haar measure on (Z/2)J = Γ, then

µG(H) = µΓ(
{
α ∈ (Z/2)J : uα ∈ H

}
) for all H ⊆ G.

Next, for each pair (i, j) ∈ J × J let

Γ+
(i,j) = {α ∈ Γ : αi = αj} and Γ−(i,j) = {α ∈ Γ : αi 6= αj}
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Observe that, Γ+
(i,j) t Γ−(i,j) = Γ. Moreover,

µΓ(Γ+
(i,j)) = 1/2 = µΓ(Γ−(i,j)) whenever i 6= j, Γ+

(j,j) = Γ, and Γ−(j,j) = ∅

Hence, for b ∈ B(H)

ED(b) = WOT-

∫
G

u∗budµG(u)

= WOT-

∫
G

(∑
i∈J

(−1)αipi

)
b

∑
j∈J

(−1)αjpj

 dµG(uα)

= WOT-

∫
G

∑
i,j∈J

(−1)αi+αjpibpj dµG(uα)

=
∑
i,j∈J

pibpj

∫
Γ

(−1)αi+αj dµΓ(α)

=
∑
j∈J

pjbpj

∫
Γ+

(j,j)

1 dµΓ(α) +
∑
i,j∈J
i6=j

pibpj

(∫
Γ+

(i,j)

1 dµΓ(α)−
∫

Γ−
(i,j)

1 dµΓ(α)

)

=
∑
j∈J

pjbpj

Then, since ej and pj are both supported on Aj and these supports are disjoint,

we have

pj

(∑
i∈J

ei

)
= ej =

(∑
i∈J

ei

)
pj

Thus,

ED(eae) =
∑
j∈J

pj

(∑
i∈J

ei

)
a

(∑
i∈J

ei

)
pj =

∑
j∈J

ejaej = θ(ej)j∈J (a) (5)

Next, note that for any f ∈ D1, f is constant on each Aj since D is generated

by the pj ’s. Moreover, since the Aj ’s are (2L−1)-disjoint we may find an f̃ ∈
Cb(X)1 that is L-Lipschitz and such that f̃ agrees with f on the Aj ’s; that is,

1Df̃ = f = f̃1D. Indeed, if x ∈ Aj and y ∈ Ai, j 6= i then d(x, y) > 2L−1 and

so ∣∣∣f̃(x)− f̃(y)
∣∣∣ ≤ ∣∣∣f̃(x)

∣∣∣+
∣∣∣f̃(y)

∣∣∣ ≤ 2 = L(2L−1) ≤ L d(x, y).

12



Additionally, if f̃ linearly interpolates between the Aj ’s then f̃ is L-Lipschitz.

Notice that, since each ej ∈ Cb(X)1 (since the ej ’s are contractive) and they

have disjoint supports, e =
∑
j∈J ej ∈ Cb(X)1. Thus, f̃ commutes with e since

both are in Cb(X). Observe that,

‖[f, eae]‖ = ‖f(eae)− (eae)f‖ =
∥∥∥f̃ eae− eaef̃∥∥∥ =

∥∥∥ef̃ae− eaf̃e∥∥∥
= ‖e‖

∥∥∥f̃a− af̃∥∥∥ ‖e‖ < ε

since f̃ ∈ Cb(X)1 is L-Lipschitz and a ∈ Commut(L, ε). Then since f ∈ D1 was

arbitrary, sup
f∈D1

‖[f, eae]‖ ≤ ε. Therefore,

∥∥eae− θ(ej)j∈J (a)
∥∥ (5)

= ‖ED(eae)− eae‖
3.6
≤ sup

f∈D1

‖[f, eae]‖ ≤ ε

as was to be shown.

3.2 Property A and Proof of (4)

Definition 3.9 ([9], Definition 2.6). A bounded sequence (fn)n∈N ∈ `∞(N, Cb(X))

is very Lipschitz if for each L > 0 there is an nL such that fn is L-Lipschitz

whenever n ≥ nL. Let V L(X) be the set of all very Lipschitz bounded se-

quences. Define

V L∞(X) := V L(X)�{(fn)n∈N ∈ V L(X) : lim
n→∞

‖fn‖Cb(X) = 0},

and for H = `2(X)

(B(H))∞ := `∞(N,B(H))�{(fn)n∈N ∈ `∞(N,B(H)) : lim
n→∞

‖fn‖op = 0}.

Lemma 3.10. V L(X) is a C*-subalgebra of `∞(N, Cb(X)).

Proof. That V L(X) is closed under addition, scaler multiplication, and invo-

lution is clear. To show that V L(X) is closed under multiplication let f, g ∈
V L(X) and L > 0 be given. Take n large enough so that

|fn(x)− fn(y)| ≤ L

2 ‖g‖
· d(x, y) and |gn(x)− gn(y)| ≤ L

2 ‖f‖
· d(x, y).

13



Observe that

|fn(x)gn(x)− fn(y)gn(y)| = |fn(x)gn(x)− fn(y)gn(x)− fn(y)gn(x) + fn(y)gn(y)|

≤ |fn(x)− fn(y)| ‖g‖+ ‖f‖ |gn(x)− gn(y)| ≤ L · d(x, y)

Next, let {fα}α∈A be a net in V L(X) converging to f ∈ `∞(N, Cb(X)). Since

fα → f , given ε > 0 there exists an α0 such that

sup
n∈N

sup
x∈X
|fαn (x)− fn(x)| = ‖fα − f‖`∞(N,Cb(X)) < ε whenever α ≥ α0.

Fix α > α0. For this α there exists an nL such that |fαn (x)− fαn (y)| ≤ L ·d(x, y)

whenever n ≥ nL. Observe that

|fn(x)− fn(y)| = |fn(x)− fαn (x) + fαn (x)− fαn (y) + fαn (y)− fn(y)|

≤ |fn(x)− fαn (x)|+ |fαn (x)− fαn (y)|+ |fαn (y)− fn(y)| < 2ε+ L · d(x, y)

whenever n ≥ nL, so that f ∈ V L(X).

Note that V L∞(X) ⊆ (B(H))∞, and both are C∗-algebras under the quo-

tient norm

‖f‖ql = lim sup
n→∞

‖fn‖op where f = (fn)n∈N.

Lemma 3.11 ([11],Lemma 3.5). Let b ∈ B(`2(x)) and ε > 0 be given. Then

‖[b, f ]‖ql < ε for every f ∈ V L∞(X)1 if and only if there exists some L > 0

such that b ∈ Commut(L, ε).

Proof. For the reverse direction let L be fixed but arbitrary. Observe that for

any f = (fn)n∈N ∈ V L∞(X)1, we may assume that fn ∈ Cb(X)1 for all n ∈ N.

Moreover, there exists an nL such that fn is L-Lipschitz for all n ≥ nL. Thus,

since b ∈ Commut(L, ε), ‖[b, fn]‖ < ε for all n ≥ nL and so ‖[b, f ]‖ql < ε.

For the forward direction suppose for contradiction that ‖[b, f ]‖ql < ε for all f ∈
V L∞(X) but, for all L > 0, b 6∈ Commut(L, ε). Then, for each n there exists

a 1
n -Lipschitz function fn ∈ Cb(X)1 such that ‖[b, fn]‖ ≥ ε for all n. However,

f = (fn)n∈N ∈ V L∞ so that ‖[b, f ]‖ql = lim supn→∞ ‖[b, fn]‖ ≥ ε, a contradic-

tion.

Note that, by the previous lemma, our old goal of proving

b ∈ C∗u (X) if and only if [b, f ] = 0 for all f ∈ V L∞(X)1

14



is equivalent to our new goal

b ∈ C∗u (X) ⇐⇒ ∀ε > 0 there exists an L > 0 such that b ∈ Commut(L, ε).

(6)

Definition 3.12. For a metric space (X, d), a cover U = {Ui}i∈I is,

i) uniformly bounded if supi∈I diam(Ui) <∞ where diam(U) := supx,y∈U{d(x, y)}
and has,

ii) finite multiplicity if there exists some M such that for each x ∈ X , at most

M elements of U contain x.

Definition 3.13 (metric p-partition of unity, [10] definition 6.1). For p ∈ [0,∞),

a metric p-partition of unity on a metric space (X, d) is a collection

{φi : X → [0, 1]}i∈I of functions on X satisfying

i) The cover {supp(φi)}i∈I is uniformly bounded and has finite multiplicity.

ii) For each x ∈ X,
∑
i∈I φi(x)p = 1.

Note that by this second condition viewing
∑
i∈I φ

2
i as an element of Cb(X),∑

i∈I φ
2
i is the identity in B(`2(X)).

Definition 3.14 (property A). A metric p-partition of unity {φi}i∈I has (r, ε)-

variation if ∑
i∈I
|φi(x)− φi(y)|p < εp whenever d(x, y) < r

The space X has property A if for any p ∈ [1,∞) and r, ε > 0 there exists a

metric p-partition of unity with (r, ε)-variation.

Remark 3.15. While this is not the original definition of property A given by

Yu [13] definition 2.1; it is an equivalent definition by [12] Theorem 1.2.4, (6).

Moreover, it is the definition that we shall need. Furthermore, by [2], property

A implies the metric sparsification property below.

Definition 3.16 (metric sparsification property). A metric space (X, d) has the

metric sparsification property if for any c ∈ [0, 1) there exists a nondecreasing

function f : N→ N satisfying,

1. for any M ∈ N, and
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2. for any finite positive Borel measure µ on X;

there exists a Borel subset of X, Ω = ti∈IΩi such that,

i) d(Ωi,Ωj) ≥M , whenever i 6= j,

ii) diam(Ωi) ≤ f(M) for every i ∈ I,

iii) µ(Ω) ≥ cµ(X).

Note that the following lemmas still hold for a general p ∈ (1,∞). However,

since we are concerned with C∗u (X) we only consider the case where p = 2. See

[11] for a general treatment.

Lemma 3.17 ([11], Lemma 5.2). Suppose that X has the metric sparsification

property. Then for any ε > 0, L > 0, and M > 0, there exists an s > 0 such

that for all b ∈ B(`2(X)) with ‖b‖ ≤ M and b ∈ Commut(L, ε), there exists a

unit vector v ∈ `2(X) with diam(supp(v)) ≤ s, and satisfying:

‖bv‖ ≥ ‖b‖ − 6ε

To prove this we first make a claim to obtain an estimate. Then we proceed

to the proof of the lemma. Let us fix ε, L,M > 0 for the claim and proof of the

lemma.

Claim 3.17.1. Let v ∈ `2(X) have the form

v =
∑
j∈J

vj with d (supp(vj), supp(vi)) >
4

L
.

Then for b ∈ B(`2(X)) with ‖b‖ ≤M and b ∈ Commut(L, ε) we have that

‖bv‖
‖v‖

≤ sup
j∈J

‖bvj‖
‖vj‖

+ 3ε.

Proof of claim 3.17.1. First we need several estimates. Set Yj := supp(vj) and

define

fj(x) =


1 if x ∈ Yj
1− L · d(x, Yj) if 0 ≤ d(x, Yj) ≤ 1

L

0 otherwise.
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Note that for each Yj , fj ∈ (Cb(X))1 and fj is a positive L-Lipschitz function

such that

f �Yj= 1 and supp(fj) ⊆ {x ∈ X : d(x, Yj) ≤ 1
L}.

Moreover, the family {supp(fj) : j ∈ J} is (2L−1)-disjoint. Setting f =
∑
j∈J fj

we have that f ∈ Cb(X)1, f is L-Lipschitz and, fv = v. Furthermore, (1 − f)

is L-Lipschitz since ‖(1− f(x))− (1− f(y))‖ = ‖f(x)− f(y)‖. Combining this

with the supposition that b ∈ Commut(L, ε) we have

‖bv‖ = ‖fbv + bv − fbv − bv + bfv + bv − bfv‖

= ‖fbv + ((1− f)b− b(1− f)) v + (bv − bfv)‖

≤ ‖fbv‖+ ‖[(1− f), b]‖ ‖v‖ ≤ ‖fbv‖+ ε ‖v‖

Thus,

‖bv‖ ≤ ‖fbv‖+ ε ‖v‖ (7)

Note that (fj)j∈J and the operator b satisfy the conditions of Corollary 3.8, and

so
∥∥∥fbf −∑j∈J fjbfj

∥∥∥ ≤ ε. Thus,

‖fbfv‖ −

∥∥∥∥∥∥
∑
j∈J

fjbfjv

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥fbf −

∑
j∈J

fjbfj

∥∥∥∥∥∥ ‖v‖ ≤ ε ‖v‖
so that

‖fbfv‖ ≤

∥∥∥∥∥∥
∑
j∈J

fjbfjv

∥∥∥∥∥∥+ ε ‖v‖ .

Using this and that fjv = vj & fv = v we have that

‖fbv‖ = ‖fbfv‖ ≤

∥∥∥∥∥∥
∑
j∈J

fjbfjv

∥∥∥∥∥∥+ ε ‖v‖ =

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥+ ε ‖v‖ . (8)

Since: (1− fj) is L-Lipschitz for all j ∈ J , b ∈ Commut(L, ε) and,

bvj − bfjvj = 0;

‖(1− fj)bvj‖ = ‖bvj − fjbvj − (bvj − bfjvj)‖ = ‖[(1− fj), b]vj‖ ≤ ε ‖vj‖ . (9)

Then using the triangle inequality (in the space `2
(
J, `2(X)

)
) and that (fj)j∈J
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have mutually disjoint supports (cf.A.1), we have that

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2

=

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2J

=

∑
j∈J
‖fjbvj‖2`2

1/2

=

∑
j∈J
‖bvj − (1− fj)bvj‖2`2

1/2

≤

∑
j∈J
‖bvj‖2`2

1/2

+

∑
j∈J
‖(1− fj)bvj‖2`2

1/2

(9)

≤

∑
j∈J
‖bvj‖2`2

1/2

+

∑
j∈J

ε2 ‖vj‖2`2

1/2

=

∑
j∈J
‖bvj‖2`2

1/2

+ ε ‖v‖`2 .

Thus, ∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2

≤

∑
j∈J
‖bvj‖2`2

1/2

+ ε ‖v‖`2 . (10)

Observe that

‖bv‖
(7)

≤ ‖fbv‖+ ε ‖v‖
(8)

≤

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥+ 2ε ‖v‖
(10)

≤

∑
j∈J
‖bvj‖2

1/2

+ 3ε ‖v‖

and so we obtain

(‖bv‖ − 3ε ‖v‖)2 ≤
∑
j∈J
‖bvj‖2 . (11)

Now we are ready to prove the claim. Suppose for contradiction that the

conclusion of the claim fails. Then, for any fixed j ∈ J , we have

‖bv‖
‖v‖

> sup
i∈J

‖bvi‖
‖vi‖

+ 3ε ≥ ‖bvj‖
‖vj‖

+ 3ε

=⇒
(
‖bv‖
‖v‖

− 3ε ‖v‖
‖v‖

)2

>

(
‖bvj‖
‖vj‖

)2

=⇒ (‖bv‖ − 3ε ‖v‖)2 ‖vj‖2

‖v‖2
> ‖bvj‖2 . (12)

However, that would mean that,

(‖bv‖ − 3ε ‖v‖)2
(11)

≤
∑
j∈J
‖bvj‖2

(12)
<
∑
j∈J

(‖bv‖ − 3ε ‖v‖)2

‖v‖2
‖vj‖ = (‖bv‖ − 3ε ‖v‖)2
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a contradiction. Therefore,

‖bv‖
‖v‖

≤ sup
j∈J

‖bvj‖
‖vj‖

+ 3ε.

Proof of Lemma 3.17. Recall that X has the metric sparsification property.

Thus, for c > 1−( ε
M )2 there exists a function f : N→ N such that for any finite

positive Borel measure µ on X, there exists a decomposition Ω = tj∈JΩj ⊆ X
that satisfies:

i) d(Ωj ,Ωi) > 4/L whenever j 6= i,

ii) diam(Ωj) ≤ f(4/L), and

iii) µ(Ω) ≥ cµ(X).

Let ω ∈ `2(X) \ {0}. Define a measure µω on X by µω({x}) = |ω(x)|2. Then

we let Ω = tj∈JΩj be the associated decomposition. For any subset Z ⊆ X we

define PZ : `2(X)→ `2(X) by

(PZξ)(x) =

ξ(x) if x ∈ Z

0 otherwise.

Notice that PZ is a contraction for all Z ⊆ X.

Next, for our measure µω we make the following observations:

i)

µω(X) =
∑
x∈X

µω({x}) =
∑
x∈X
|ω(x)|2 = ‖ω‖2 ,

ii)

‖ω − PΩω‖2 =
∑
x∈X
|ω(x)− PΩω(x)|2

=
∑

x∈X\Ω

|ω(x)|2 =
∑

x∈X\Ω

µω({x}) = µω(X \ Ω),

iii) and since µω(Ω) ≥ cµω(X),

‖ω‖2−µω(Ω) = µω(X)−µω(Ω) = µω(X\Ω) ≤ (1−c) ‖ω‖2 = ‖ω‖2−cµω(X).
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Putting this together we have that,

‖bω − bPΩω‖2 ≤ ‖b‖2 ‖ω − PΩω‖2 = ‖b‖2 µω(x \ Ω) ≤M2(1− c) ‖ω‖2 ,

and so

‖bPΩω‖ ≥ ‖bω‖ −M(1− c)1/2 ‖ω‖ (13)

where M was fixed before Claim 3.17.1. Note that, since d(Ωj ,Ωi) > 4/L

whenever j 6= i, PΩω =
∑
j∈J PΩj

ω is a vector satisfying the conditions of

Claim 3.17.1. Thus,

sup
j∈J

∥∥bPΩj
ω
∥∥∥∥PΩjω
∥∥ +3ε ≥ ‖bPΩω‖

‖PΩω‖
≥ ‖bω‖ −M(1− c)1/2 ‖ω‖

‖ω‖
=
‖bω‖
‖ω‖

−M(1−c)1/2.

Now we take ω ∈ `2(X) \ {0} such that ‖bω‖‖ω‖ ≥ ‖b‖ − ε so that

sup
j∈J

∥∥bPΩj
ω
∥∥∥∥PΩj

ω
∥∥ ≥ ‖b‖ − 4ε−M(1− c)1/2.

Moreover, Since c > 1− ( ε
M )2 there exists a j ∈ J such that∥∥bPΩjω

∥∥
PΩjω

≤ ‖b‖ − 6ε

with diam(supp(PΩj
ω)) ≤ f(4/L). Setting s := f(4/L) and v =

PΩj
ω

‖PΩj
ω‖ , we

complete the proof.

Lemma 3.18. Let (φj)j∈J be a metric 2-partition of unity on X. Then for

b ∈ B(`2(X)) we have that
∑
j∈J φjbφj converges in the strong operator topology

to an operator in B(`2(X)), and∥∥∥∥∥∥
∑
j∈J

φjbφj

∥∥∥∥∥∥ ≤ ‖b‖ , (14)

Proof. Since
∥∥∥∑j∈J φ

2
j

∥∥∥ = 1 by Lemma 3.1
∑
j∈J φjbφj converges strongly.

Next, let H = `2(X) and define

V : H → `2(J,H) by V : ξ 7→ (φjξ)j∈J and
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V ∗ : `2(J,H)→ H by V ∗ : (ξj)j∈J 7→
∑
j∈J

φjξj .

We first show that V and V ∗ are well defined (in fact V is an isometry). Observe

that,

‖V ξ‖2`2(J,H) =
∑
j∈J
‖φjξ‖2H =

∑
j∈J

∑
x∈X
|φj(x)ξ(x)|2 =

∑
x∈X

∑
j∈J

φj(x) |ξ(x)|2 = ‖ξ‖2H ,

and that

‖V ∗(ξj)j∈J‖H =

∥∥∥∥∥∥
∑
j∈J

φjξj

∥∥∥∥∥∥
H

=

∑
x∈X

∣∣∣∣∣∣
∑
j∈J

φj(x)ξj(x)

∣∣∣∣∣∣
2


1/2

≤

∑
x∈X

∑
j∈J
|φj(x)ξj(x)|

2


1/2

C-S
≤

∑
x∈X


∑
j∈J
|φj(x)|2

1/2∑
j∈J
|ξj(x)|2

1/2


2
1/2

=

∑
x∈X

∑
j∈J
|ξj(x)|2

1/2

= ‖(ξj)j∈J‖`2(J,H) .

Putting this together with the fact that

V ∗V ξ = V ∗(φjξ)j∈J =
∑
j∈J

φj(φjξ) = ξ

we have that ‖V ∗‖ = 1 = ‖V ‖. Define (bj)j∈J ∈ `∞(J,B(H)) by bj = b for all

j ∈ J . Observe that,

V ∗(bj)j∈JV ξ = V ∗(bj)j∈J(φjξ)j∈J = V ∗(bφjξ)j∈J =
∑
j∈J

φjbφjξ

Thus, ∥∥∥∥∥∥
∑
j∈J

φjbφj

∥∥∥∥∥∥ = ‖V ∗(bj)j∈JV ‖ ≤ ‖b‖

as was to be shown.
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Lemma 3.19 ([11], Section 5). Suppose that X has property A. Let (φj)j∈J be a

metric 2-partition of unity on X and let R be a uniform bound on {supp(φj)}j∈J .

Then for b ∈ B(`2(X)) we have that:

i) ∑
j∈J

φjbφj ∈ CRu [X] , and

ii) ∑
j∈J

φjbφj − b =
∑
j∈J

φj [b, φj ] (15)

Proof. First observe that,∑
j∈J

φjbφj


xy

=

〈∑
j∈J

φjbφjϑx, ϑy

〉
=
∑
j∈J
〈φjbφjϑx, ϑy〉

=
∑
j∈J
〈bφjϑx, φjϑy〉 =

∑
j∈J

φj(x)φj(y) 〈bϑx, ϑy〉 =
∑
j∈J

φj(x)φj(y)bxy (16)

Since R is a uniform bound on {supp(φj)}j∈J , if d(x, y) > R, then φj(x)φj(y) =

0 for all j ∈ J and so
∑
j∈J φjbφj ∈ CRu [X].

Lastly, we calculate∑
j∈J

φj [b, φj ] =
∑
j∈J

φj(bφj − φjb) =
∑
j∈J

(φjbφj − φ2
jb)

=
∑
j∈J

φjbφj −
∑
j∈J

φ2
jb

3.13
=
∑
j∈J

φjbφj − b

as was to be shown.

Lemma 3.20 ([11], Lemma 5.4). Let b ∈ Commut(L, ε) for some L, ε > 0.

then for any metric 2-partition of unity (φj)j∈j, the operator
∑
j∈J φj [b, φj ] ∈

Commut(L, 2ε).

Proof. Let f be an arbitrary L-Lipschitz function in Cb(X). Note that, since

f, φj ∈ Cb(X), f and φj commute for all j ∈ J . Thus,∥∥∥∥∥∥
∑
j∈J

φj [b, φj ], f

∥∥∥∥∥∥ (15)
=

∥∥∥∥∥∥
∑

j∈J
φjbφj − b

 , f

∥∥∥∥∥∥
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=

∥∥∥∥∥∥
∑
j∈J

φjbφj − b

 f − f

∑
j∈J

φjbφj − b

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j∈J

φjbφj

 f − bf − f

∑
j∈J

φjbφj

+ fb

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j∈J

φjbfφj −
∑
j∈J

φjfbφj − [b, f ]

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j∈J

φj [b, f ]φj − [b, f ]

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j∈J

φj [b, f ]φj

∥∥∥∥∥∥+ ‖[b, f ]‖ ≤ ε+ ε = 2ε

since b ∈ Commut(L, ε).

Theorem 3.21 ([11],Theorem 3.3). Let (X, d) be a metric space with bounded

geometry having property A. Suppose that for b ∈ B(`2(X)) we have [b, f ] =

0 for all f ∈ VL∞(X). Then b ∈ C∗u (X).

Proof. Let ε > 0 be given and fix b ∈ B(`2(X)) such that [b, f ] = 0 for all f ∈
VL∞(X). SetM = ‖b‖, then by Lemma 3.11 there exists an L > 0 such that b ∈
Commut(L, ε

max{4M,24} ). Next, applying Lemma 3.17 to ε/12, L, 2M, we obtain

an s > 0 such that for any operator a ∈ B(`2(X) with ‖a‖ ≤ 2M and a ∈
Commut(L, ε/12), there exists a unit vector v ∈ `2(X) with diam(supp(v)) ≤ s,
and satisfying ‖av‖ ≥ ‖a‖ − ε/2. Note that, since X has bounded geometry,

K := supz∈X
∣∣B(z, s+ 1

L )
∣∣ <∞.

Now, since X has property A, we may take a metric 2-partition of unity

(φj)j∈J with (s+ 2
L ,

ε
4MK )-variation. Take

b′ =
∑
j∈J

φjbφj .

Note that, by Lemmas 3.18 and 3.19, b′ ∈ CRu [X] for some R < ∞ and ‖b′‖ ≤
‖b‖ ≤ M . Let a := b′ − b so that ‖a‖ ≤ 2M . Observe that, by (15) a =∑
j∈J φj [b, φj ]. Moreover, a ∈ Commut(L, ε/12) by Lemma 3.20. Thus, there

exists a unit vector v ∈ `2(X) with diam(supp(v)) ≤ s satisfying

‖av‖ ≥ ‖a‖ − ε/2. (17)

Take F := supp(v) and G := {x ∈ X : d(x, F ) ≤ 1/L}. Then we may find
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an L-Lipschitz function f ∈ Cb(X)1 such that f �Gc= 1 and f �F= 0. Since

f �F= 0, fv = 0, so that (fa− af)v = fav = χ
Gc
av + χ

G
fav. Thus,∥∥∥χ

Gc
av
∥∥∥ =

∥∥∥χ
Gc

[f, a]v
∥∥∥ ≤ ∥∥∥χ

Gc

∥∥∥ ‖[a, f ]‖ ‖v‖ ≤ ε/12

since a ∈ Commut(L, ε/12) and v is a unit vector. Hence,

‖av‖ ≤
∥∥∥χ

G
av + χ

Gc
av
∥∥∥ ≤ ∥∥∥χ

G
av
∥∥∥+

∥∥∥χ
Gc
av
∥∥∥ ≤ ∥∥∥χ

G
av
∥∥∥+ ε/12 (18)

Observe that,

axy = b′xy − bxy
(16)
=
∑
j∈J

φj(x)φj(y)bxy − bxy

3.13
=
∑
j∈J

φj(x)φj(y)bxy −
∑
j∈J

φj(x)2bxy =
∑
j∈J

φj(x) (φj(y)− φj(x)) bxy

Thus, for any x ∈ G we have

|(av)(x)| =

∣∣∣∣∣∣
∑
y∈F

axyv(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
y∈F

∑
j∈J

φj(x)bxy (φj(y)− φj(x)) v(y)

∣∣∣∣∣∣ (19)

Now, for x ∈ G and each y ∈ F, d(x, y) ≤ s+ 2
L so that

∑
j∈J
|φj(y)− φj(x)|2

1/2

≤ ε
4MK (20)

since (φj)j∈J has (s+ 2
L ,

ε
4MK )-variation. Hence,∣∣∣∣∣∣

∑
j∈J

φj(x)bxy (φj(y)− φj(x))

∣∣∣∣∣∣ ≤M
∑
j∈J

φj(x) |φj(y)− φj(x)|

C-S
≤ M

∑
j∈J

φj(x)2

1/2

·

∑
j∈J
|φj(y)− φj(x)|2

1/2

3.13
= M

∑
j∈J
|φj(y)− φj(x)|2

1/2

(20)

≤ M
ε

4MK
=

ε

4K
(21)
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Thus,

|(av)(x)|
(19)

≤
∑
y∈F

∣∣∣∣∣∣
∑
j∈J

φj(x)bxy (φj(y)− φj(x))

∣∣∣∣∣∣ |v(y)|

(21)

≤ ε

4K

∑
y∈F
|v(y)|

C-S
≤ ε

4K
|F |1/2 ·

∑
y∈F
|v(y)|2

1/2

≤ ε

4K

(
sup
y∈F
|B(y, s)|

)1/2

‖v‖ ≤ εK1/2

4K
. (22)

Combining (22) with (18) we obtain

‖av‖
(18)

≤
∥∥∥χ

G
av
∥∥∥+

ε

12
=

(∑
x∈G
|(av)(x)|2

)1/2

+
ε

12

(22)

≤ εK1/2

4K
·K1/2 +

ε

12
<
ε

2
.

Therefore,

‖b′ − b‖ = ‖a‖
(17)

≤ ‖av‖+
ε

2
<
ε

2
+
ε

2
= ε

and so b ∈ C∗u (X)

4 Families of Operators and Conclusion

First we make a claim, then the results following the claim, due to Braga and

Farah, will allow us to consider families of operators simultaneously.

Claim 4.0.1. If (Vα)α∈A is a net of operators in CRu [X] converging weakly to

some V ∈ B(H) then V ∈ CRu [X].

Proof. First, since Vα ∈ CRu [X]

|〈Vαϑx, ϑy〉| = 0 whenever d(x, y) > R for all α ∈ A

Next, since this net weakly converges given any ξ, η ∈ `2(X) and ε > 0 there

exists an αξ,η such that,

|〈(Vα − V )ξ, η〉| < ε whenever α ≥ αξ,η.

Putting this together we have that,

ε > |〈(Vα − V )ϑx, ϑy〉| = |〈V ϑx, ϑy〉| whenever d(x, y) > R.
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Thus, letting ε → 0, we have that Vxy = 0 whenever d(x, y) > R and so

V ∈ CRu [X] as was to be shown.

Definition 4.1 (ε-R-approximated). Given ε > 0 and R > 0; an operator

T ∈ B(`2(X)) can be ε-R-approximated, denoted T ∈ε CRu [X], if there exists

an S ∈ CRu [X] such that ‖T − S‖ ≤ ε.

Lemma 4.2 ([1], Lemma 4.6). Let (X, d) be a metric space with bounded ge-

ometry, and let ε > 0. Let T ∈ C∗u (X) and let P ∈ `∞(X) be a finite rank

projection. Then,

i) if T is ε-R-approximated then so is TP , and

ii) if TP is (ε+γ)-R-approximated for all γ > 0, then TP is ε-R-approximated.

Proof. Since T is ε-R-approximated there exists a V ∈ CRu [X] such that ‖T − V ‖ <
ε. Moreover, supp(V P ) ⊆ supp(V ), so V P ∈ CRu [X] and ‖TP − V P‖ ≤
‖T − V ‖ ‖P‖ < ε so i) holds.

For ii) we may choose an Vn ∈ CRu [X] such that ‖TP − Vn‖ < ε+ 1
n for every

n ∈ N. Define the sets

X ′ := {x ∈ X : Pϑx 6= 0} and X ′′ := {x ∈ X : ∃x′ ∈ X ′ such that d(x, x′) ≤ R}.

Let l = |X ′|, and let k = |X ′′|. Since P is finite rank, and Vn ∈ CRu [X], both X ′

and X ′′ are finite sets. Moreover, for each n ∈ N, VnP can be naturally identified

as an operator SnP : `2(X ′) → `2(X ′′). Which, in turn can be identified with

Mk,l(C). Note that,

‖TP − VnP‖ ≤ ‖TP − Vn‖ ‖P‖ ≤ ε+
1

n
so that, ‖VnP‖ ≤ ‖T‖+ ε+ 1

for all n. Thus, (VnP )n∈N is a bounded sequence in a finite dimensional space

and so has a convergent subsequence which we also denote as (VnP )n∈N. Let V

be the limit of this subsequence. By Claim 4.0.1 V ∈ CRu [X]; moreover,

‖TP − V ‖ = lim
n→∞

‖TP − VnP‖ < lim
n→∞

ε+
1

n
= ε.

Therefore, TP is ε-R-approximated.

Lemma 4.3 ([1], Lemma 4.7). Let (X, d) be a metric space. Let (Pj)j∈X be

an increasing net of finite rank projections in `∞(X) converging strongly to the
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identity. Then for ε, R > 0, if T ∈ B(`2(X)) cannot be ε-R-approximated then

there exists a j0 such that TPj cannot be ε-R-approximated for all j ≥ j0.

Proof. Suppose not. Then for all j0 ∈ J there exists j ≥ j0 such that TPj is

ε-R-approximated. However, since (Pj)j∈X is an increasing net of finite rank

projections, TPjPj0 = TPj0 whenever j ≥ j0. Thus, by Lemma 4.2 TPj0 is

ε-R-approximated for all j0 ∈ X. For every j ∈ X fix a Sj ∈ CRu [X] such

that ‖TPj − Sj‖ < ε. Note that, ‖Sj‖ < ε + ‖T‖ for all j so the net (Sj)j∈J

is contained in a weakly compact subset of B(`2(X)). By passing to a sub-

net if necessary we may assume that (Sj)j∈J weakly converges to an operator

S. Moreover, by Claim 4.0.1, S ∈ CRu [X] so that ‖T − S‖ > ε by assump-

tion. Thus, there exists unit vectors ξ, η such that |〈(T − S)ξ, η〉| > ε (cf.A.2).

Then, there exists a j0 such that ‖(TPj − Sj)ξ‖ > ε whenever j ≥ j0 (cf.A.3).

However, since ‖ξ‖ = 1,

‖(TPj − Sj)ξ‖ ≤ sup
‖ζ‖=1

‖(TPj − Sj)ζ‖ = ‖TPj − Sj‖

which contradicts that Sj ε-R-approximates TPj .

Lemma 4.4 ([1], Lemma 4.8). Let (X, d) be a metric space, and let K be a

compact subset of C∗u (X) in the norm topology. Then for every ε > 0 there

exists R > 0 such that every T ∈ K can be ε-R-approximated.

Proof. Given ε > 0 for each T ∈ K there exists some RT such that T is ε-

RT -approximated. Thus, if K is finite we may take R = max {RT }. If K is

infinite we build an open cover Bε/2(T ) := {S ∈ K : ‖S − T‖ < ε/2}. Since K

is compact we may take a finite subcover. Then by the finite case there exists

an R such that the center of each ball is ε/2-R-approximated. Thus, by the

triangle inequality, every element of K can be ε-R-approximated.

Lemma 4.5. Let (Tα)α∈A be a uniformly bounded net in C∗u (X) converging

strongly to T ∈ C∗u (X). Then for any finite rank operator k ∈ C∗u (X), the net

(Tαk)α∈A converges in norm.

Proof. Suppose for contradiction that (Tαk)α∈A does not converge in norm. Let

M be the uniform bound on (Tαk)α∈A. Then there exists an ε > 0 such that

for all j ∈ A there exists an αj ≥ j such that
∥∥Tαj

k − Tk
∥∥ ≥ ε. Hence, for all

j ∈ A there exists a ξαj
∈ `2(X),

∥∥ξαj

∥∥ = 1 such that
∥∥(Tαj

k − Tk)ξαj

∥∥ > ε
2 .
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Next, since k is finite rank, the image of the closed unit ball of `2(X) is

compact under k. Thus, the net (kξαj )j∈A has a convergent subnet, kξβ → η.

Then, since (Tα)α∈A converges strongly there exists an αη such that

‖(Tα − T )η‖ < ε
4 whenever α ≥ αη.

Moreover, there exists a β0 such that

‖kξβ − η‖ < ε
4(M+‖T‖) whenever β ≥ β0.

Taking β ≥ αη, β ≥ β0 we have

‖(Tβk − Tk)ξβ‖ = ‖(Tβ − T )(kξβ − η + η)‖

= ‖(Tβ − T )(η) + (Tβ − T )(kξβ − η)‖

≤ ‖(Tβ − T )(η)‖+ (‖Tβ‖+ ‖T‖) ‖kξβ − η‖ ≤
ε

4
+
ε

4
=
ε

2

contradicting that ‖(Tβk − Tk)ξβ‖ > ε
2 .

It will be convenient in what follows to denote a set indexed by X, of ele-

ments λx ∈ D, by λ ∈ DX where D := {z ∈ C : |z| ≤ 1}.

Lemma 4.6. Suppose that (Tj)j∈X is a family of finite rank operators in C∗u (X)

such that for every λ ∈ DX the series
∑
j∈X λjTj converges strongly to an oper-

ator Tλ ∈ C∗u (X). Moreover, suppose that
∥∥∥∑j∈F λjTj

∥∥∥ is uniformly bounded

for all finite F ⊆ X. Then, for any finite rank projection P ∈ C∗u (X) and any

δ > 0 there exists a finite set I such that for all finite K ⊇ I and all λ ∈ DX

we have that ∥∥∥∥∥∥
∑

j∈X\K

λjTjP

∥∥∥∥∥∥ < δ

Proof. First, let TjP = xj for all j ∈ X. Then by Lemma 4.5
∑
j∈X λjxj

converges in norm for all λ ∈ DX . Suppose for contradiction that the conclusion

of the lemma fails. Then,

(∃δ > 0)(∀F0

finite

⊂ X)(∃F
finite

⊇ F0)(∃λ ∈ DX) such that

∥∥∥∥∥∥
∑

j∈X\F

λjxj

∥∥∥∥∥∥ ≥ δ
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Then, we may inductively build a chain of finite subsets

F1 ⊆ H1 ⊆ F2 ⊆ H2 ⊆ . . . such that

∥∥∥∥∥∥
∑

j∈Hk\Fk

λ
(k)
j xj

∥∥∥∥∥∥ > δ

2
.

Indeed, let δ be as above and let F0 be arbitrary. By supposition there exists a

F1 ⊇ F0 and a λ
(1) ∈ DX such that∥∥∥∥∥∥

∑
j∈X\F1

λ
(1)
j xj

∥∥∥∥∥∥ ≥ δ.
Since

∑
j∈X λ

(1)
j xj converges there exists a finite set E1 such that for all finite

H ⊇ E1 we have ∥∥∥∥∥∥
∑

j∈X\H

λ
(1)
j xj

∥∥∥∥∥∥ < δ

2
.

Take H1 = F1 ∪ E1; then,∥∥∥∥∥∥
∑

j∈X\H1

λ
(1)
j xj +

∑
j∈H1\F1

λ
(1)
j xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

j∈X\F1

λ
(1)
j xj

∥∥∥∥∥∥ ≥ δ
so that ∥∥∥∥∥∥

∑
j∈H1\F1

λ
(1)
j xj

∥∥∥∥∥∥ > δ

2
.

Assume now that we have carried out the construction to step n. By supposition

there exists a Fn+1 ⊇ Hn and a λ
(n+1) ∈ DX such that∥∥∥∥∥∥

∑
j∈X\Fn+1

λ
(n+1)
j xj

∥∥∥∥∥∥ ≥ δ.
Since

∑
j∈X λ

(n+1)
j xj converges there exists a finite set En+1 such that for all

finite H ⊇ En+1 we have ∥∥∥∥∥∥
∑

j∈X\H

λ
(n+1)
j xj

∥∥∥∥∥∥ < δ

2
.
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Take Hn+1 = Fn+1 ∪ En+1; then,∥∥∥∥∥∥
∑

j∈X\H1

λ
(n+1)
j xj +

∑
j∈Hn+1\Fn+1

λ
(n+1)
j xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

j∈X\Fn+1

λ
(n+1)
j xj

∥∥∥∥∥∥ ≥ δ
so that ∥∥∥∥∥∥

∑
j∈Hn+1\Fn+1

λ
(n+1)
j xj

∥∥∥∥∥∥ > δ

2
.

Note that

Hk = Fk ∪ Ek and Fk ⊇ Hk−1 ⊇ Fk−1 . . . .

Next, define an element λ ∈ DX by

λj =

λ
(k)
j if j ∈ Hk \ Fk

0 otherwise .

Since
∑
j∈X λjxj converges there exists a finite set Fλ such that for all finite

sets H ⊇ F ⊇ Fλ we have ∥∥∥∥∥∥
∑

j∈H\F

λjxj

∥∥∥∥∥∥ < δ

4
.

Now we claim that there exists anm ∈ N such that Fλ∩(Hm\Fm) = ∅. Once this

is shown we will have a contradiction by taking F = Fλ and H = Fλ∪(Hm\Fm)

since ∥∥∥∥∥∥
∑

j∈H\F

λjxj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

j∈Hm\Fm

λjxj

∥∥∥∥∥∥ ≥ δ

2
.

Thus, we need only show that there exists an m ∈ N such that Fλ∩(Hm\Fm) =

∅. Note that, since
∥∥∥∑j∈Hm\Fm

λjxj

∥∥∥ ≥ δ
2 , (Hk \ Fk) 6= ∅ for all k ∈ N.

Moreover, since Fλ is finite |Fλ| = n for some n ∈ N. Hence, there are at most

n of the (Hk \ Fk)’s such that (Hk \ Fk) ∩ Fλ 6= ∅ and so we are done.

Lemma 4.7 ([1] Lemma 4.9). Let (X, d) be a metric space with bounded geom-

etry. Suppose that (Tj)j∈X is a family of finite rank operators in C∗u (X) such

that for every λ ∈ DX the series
∑
j∈X λjTj converges strongly to an operator

Tλ ∈ C∗u (X). Moreover, suppose that
∥∥∥∑j∈F λjTj

∥∥∥ is uniformly bounded for
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all finite F ⊆ X. Then for every ε > 0 there exists R > 0 such that Tλ can be

ε-R-approximated for all λ ∈ DX . In symbols:

(∀ε > 0)(∃R > 0)(∀λ ∈ DX) such that Tλ is ε-R-approximated.

Before we prove this we fix some notation. For each finite I ⊂ X let

ZI := {λ ∈ DX : ∀j ∈ I, λj = 0} and YI := {λ ∈ DX : ∀j 6∈ I, λj = 0}

The structure of the proof is as follows. We assume for contradiction that the

conclusion of the lemma fails. If the conclusion of the lemma fails it implies

a stronger condition. We will use the stronger condition to build a cover of

DX that consists of closed sets having empty interiors. Then, by a cardinality

argument, we show that this is a contradiction. To do this we make three claims,

then we use the claims to demonstrate the contradiction.

Claim 4.7.1. If there exists an ε > 0 such that for all R > 0 there exists a

λ ∈ DX such that Tλ is not ε-R-approximated, then there exists an ε′ > 0 such

that for all R > 0 and all finite I ⊂ X there exists a r ∈ ZI such that Tr is not

ε′-R-approximated. In symbols:

(∃ε > 0)(∀R > 0)(∃λ ∈ DX) such that Tλ is not ε-R-approximated =⇒

(∃ε′ > 0)(∀R > 0)(∀I
finite

⊂ X)(∃r ∈ ZI) such that Tr is not ε′-R-approximated.

Proof of claim 4.7.1. Suppose not. Then for all ε′ > 0 there exists an R > 0 and

a finite I ⊂ X such that for all r ∈ ZI , Tr is ε′-R-approximated. In symbols:

(∀ε′ > 0)(∃R > 0)(∃I
finite

⊂ X)(∀r ∈ ZI) such that Tr is ε′-R-approximated

Take ε such that it satisfies the premise of our claim. Fix ε′ = ε/2, then for the

corresponding R and I we have that for all r ∈ ZI , Tr is ε′-R-approximated.

Note that,

for any s ∈ YI the operator Ts =
∑
j∈X

sjTj ∈ C∗u (X) ,

since it is equal to a finite linear combination of elements in C∗u (X). Moreover,

YI is homeomorphic to DI (which is compact) and the map s 7→ Ts is norm

continuous for all s ∈ YI . Thus, the set {Ts : s ∈ YI} is compact. Then, by
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Lemma 4.4, there exists an S such that Ts can be ε′-S-approximated for all

s ∈ YI . Without loss of generality we may assume that R ≤ S (otherwise take

S to be R). Now,

for any λ ∈ DX , Tλ = Tr + Ts

for some r ∈ ZI and some s ∈ YI . Hence, by the triangle inequality, Tλ can

be 2ε′-S-approximated; that is, Tλ can be ε-S-approximated, which contradicts

our premise.

Claim 4.7.2. If Tλ is ε-R-approximated but Tθ is not 2ε-R-approximated. Then,

Tλ + Tθ is not ε-R-approximated.

Proof of claim 4.7.2. Suppose for contradiction that Tλ+Tθ is ε-R-approximated.

Then there exists a G ∈ CRu [X] such that
∥∥Tλ + Tθ −G

∥∥ < ε. Additionally,

since Tλ is ε-R-approximated there exists a L ∈ CRu [X] such that
∥∥Tλ − L∥∥ < ε

Take K = G− L so that G = K + L and note that K ∈ CRu [X]. Observe that

∥∥Tθ −K∥∥− ∥∥Tλ − L∥∥ ≤ ∥∥Tθ −K + Tλ − L
∥∥ =

∥∥Tλ + Tθ −G
∥∥ < ε

Which implies that ∥∥Tθ −K∥∥ < 2ε

a contradiction.

Claim 4.7.3. If the conclusion of Lemma 4.7 fails; then for each R > 0 the set

UR :=
{
λ ∈ DX : Tλ is ε-R-approximated

}
,

is closed and has empty interior.

Proof of claim 4.7.3. Fix ε = ε′/2 where ε′ is given by claim 4.7.1 First we

show that each UR is closed. Suppose for contradiction that there exists an

R such that UR is not closed. Choose a λ ∈ UR \
(
UR ∪ Int

(
UR
))

, such that

Tλ is not ε-R-approximated. Then by Lemma 4.3, there exists a finite rank

projection P ∈ `∞ such that TλP is not ε-R-approximated. Let δ > 0 be fixed

but arbitrary. By Lemma 4.6 there exists a finite set I such that
∥∥TθP∥∥ < δ

whenever θ ∈ ZI . For this I we may write our λ as λ = λI + λ∞ for some

λI ∈ YI and λ∞ ∈ ZI . Since UR is not closed, there exists a nonempty subset

of X, say H, such that {ηh ∈ D : Tη ∈ε CRu [X]} is not closed whenever h ∈ H.
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Thus, since λ ∈ UR, for every h ∈ H ∩ I there exists a θ ∈ UR such that

0 ≤ |λh − θh| < δ�sup
j∈I
‖Tj‖ |I|.

Then, for this θ we have

∥∥TλI
− TθI

∥∥ ≤ sup
j∈I
‖Tj‖

∑
j∈I
|λj − θj | < δ.

Moreover, since Tθ is ε-R-approximated, by Lemma 4.2 there exists a Vθ ∈
CRu [X] such that

∥∥TθP − Vθ∥∥ < ε. Observe that,

∥∥TλP − Vθ∥∥ =
∥∥TλP − TθP + TθP − Vθ

∥∥
=
∥∥TθP − Vθ + TλI

P − TθIP − Tθ∞P + Tλ∞P
∥∥

≤
∥∥TθP − Vθ∥∥+

∥∥TλI
P − TθIP

∥∥+
∥∥Tθ∞P∥∥+

∥∥Tλ∞P∥∥ < ε+ 3δ

Thus, TλP is (ε + 3δ)-R-approximated. Then, by Lemma 4.2(ii), this would

mean that TλP is ε-R-approximated since δ was arbitrary. However, this con-

tradicts that TλP is not ε-R-approximated for this P . Hence, UR is closed for

each R.

Now we show that UR has empty interior for each R. Choose a λ ∈ DX

and let I ⊂ X be a finite, fixed but arbitrary subset. For this I we may write

λ = λI + λ∞ as before. Note that, there exists an R′ ≥ R such that TλI
can

be ε-R′-approximated. Recall that we fixed ε = ε′/2 where ε′ is given by claim

4.7.1. So, there exists a θ∞ ∈ ZI such that Tθ∞ is not 2ε-R′-approximated by

4.7.1. Thus, by Claim 4.7.2 TλI
+ Tθ∞ is not ε-R′-approximated. Since R ≤ R′

we have that λI + θ∞ 6∈ UR; and since I was arbitrary this shows that UR has

empty interior.

Proof of Lemma 4.7. Observe that, since for every element λ ∈ DX , Tλ ∈
C∗u (X) by supposition, every λ ∈ UR for some R. Thus,

DX =
⋃
R∈N

UR.

By claim 4.7.3 if the conclusion of the lemma fails each UR is closed and has

empty interior. That would mean that each UR is nowhere dense. Thus, we

may cover DX by a countable union of nowhere dense subsets. However, DX is
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a nonempty complete metric space and so by the Baire category theorem DX

cannot be covered by a countable union of nowhere dense subsets, a contradic-

tion.

The last piece we will need follows from [8], chapter 11.

Lemma 4.8. Let (X, d) be a metric space with bounded geometry having prop-

erty A. Let (Tk)k∈K be a family of operators. If there exists an R > 0 such that

Tk can be ε-R-approximated for all k ∈ K then there exists an S (dependent on ε

and R) such that for all k ∈ K there exists a Wk ∈ CSu [X] with ‖Wk − Tk‖ ≤ 3ε

and |(Wk)xy| ≤ |(Tk)xy| for all x, y ∈ X.

Proof. Since X has property A, by [12] Theorem 1.2.4 (8) for each R > 0, n ∈ N
there is a normalized, finite propagation, symmetric, positive type kernel

un : X ×X → R such that 1− 1

2n2
< un(x, y) ≤ 1 whenever d(x, y) ≤ R.

Moreover, by [8] Theorem 11.15, un is realized by a map ϕ : X → H (where

H is a real Hilbert space) so that un(x, y) = 〈ϕ(x), ϕ(y)〉. Thus, combining

the normalization condition un(x, x) = 1 and the Cauchy-Schwartz inequality

we have that |un(x, y)| ≤ 1 for all x, y ∈ X. Next, by [8] Lemma 11.17 and

Corollary 11.18, each un induces a unique unital completely positive contractive

map

Un : C∗u (X)→ C∗u (X) such that 〈(UnT )ϑx, ϑy〉 = un(x, y) 〈Tϑx, ϑy〉 .

and the sequence {Un}n∈N converges pointwise to the identity. Note that,

|(UnT )xy| ≤ |Txy| for all x, y ∈ X and all n, by the normalization condition.

Next, since each Tk in our family of operators can be ε-R-approximated, for

each Tk there exists a Vk such that ‖Tk − Vk‖ < ε and Vk ∈ CRu [X]. Note that

un → 1 uniformly as n → ∞ on the set {(x, y) : d(x, y) ≤ R}. Hence, UnVk →
Vk uniformly for all k and so there exits an n0 such that ‖UnVk − Vk‖ < ε for

all k whenever n ≥ n0. Fix an n > n0 and define

Wk := UnTk.

Observe that, since Un is contractive, we have

‖Wk − Tk‖ = ‖UnTk − UnVk + UnVk − Vk + Vk − Tk‖
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≤ ‖Un‖op ‖Tk − Vk‖+ ‖UnVk − Vk‖+ ‖Tk − Vk‖ < 3ε

as was to be shown.

Now we are ready to prove the main theorem.

Theorem 4.9. Let (X, d) be a metric space with bounded geometry having prop-

erty A. Then all bounded derivations on C∗u(X) are inner.

Proof. By theorem 2.9 every bounded derivation on C∗u(X) is spatially imple-

mented. Define B = {b ∈ B(`2(X)) : [b, a] ∈ C∗u(X) for all a ∈ C∗u(X)}; that

is, B is the set of all elements in B(`2(X)) that implement a derivation. Let

b ∈ B be fixed but arbitrary, and define pj to be the rank one projection onto

the jth coordinate of `2(X).

For λ ∈ DX define gλ =
∑
j∈X λjpj so that gλ ∈ (`∞(X))1 for all λ ∈ DX .

Let ξ ∈ `2(X) be fixed but arbitrary and ε > 0 be given. Since ξ ∈ `2(X) there

exists a finite set F1 such that ∑
j∈X\F

|ξj |2
1/2

<
ε

2 ‖b‖
whenever F1 ⊆ F

Additionally, bξ ∈ `2(X) so there exists a finite set F2 such that

 ∑
j∈X\F

|(bξ)j |2
1/2

<
ε

2
whenever F2 ⊆ F.

Thus, ∥∥∥∥∥∥[b, gλ]ξ −
∑
j∈F

λj [b, pj ]ξ

∥∥∥∥∥∥
`2

=

∥∥∥∥∥∥[b,
∑
j∈X

λjpj ]ξ − [b,
∑
j∈F

λjpj ]ξ

∥∥∥∥∥∥
`2

=

∥∥∥∥∥∥b
∑
j∈X

λjpj

 ξ −

∑
j∈X

λjpj

 bξ − b

∑
j∈F

λjpj

 ξ +

∑
j∈f

λjpj

 bξ

∥∥∥∥∥∥
`2

=

∥∥∥∥∥∥b
 ∑
j∈X\F

λjpj

 ξ −

 ∑
j∈X\F

λjpj

 bξ

∥∥∥∥∥∥
`2
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≤ ‖b‖

∥∥∥∥∥∥
∑

j∈X\F

λjpjξ

∥∥∥∥∥∥
`2

+

∥∥∥∥∥∥
∑

j∈X\F

λjpjbξ

∥∥∥∥∥∥
`2

= ‖b‖

 ∑
j∈X\F

|λjξj |2
1/2

+

 ∑
j∈X\F

|λj(bξ)j |2
1/2

≤ ‖b‖

 ∑
j∈X\F

|ξj |2
1/2

+

 ∑
j∈X\F

|(bξ)j |2
1/2

< ‖b‖ ε

2 ‖b‖
+
ε

2
= ε

whenever F ⊇ F1 ∪ F2. Hence,
∑
j∈X λj [b, pj ] converges strongly to [b, gλ] ∈

C∗u (X) for every λ ∈ DX and so {[b, pj ]}j∈X is a family of operators satisfying

the conditions of lemma 4.7. Moreover, every g ∈ (`∞(X))1 is given by gλ for

some λ ∈ DX .

Hence, for every ε > 0 there exists an R > 0 such that [b, g] can be ε-R-

approximated for all g ∈ `∞(X). Then by 4.8 there exists an S > 0 such that for

all g ∈ `∞(X) there exists Wg ∈ CSu [X] with ‖Wg − [b, g]‖ ≤ 3ε and |(Wg)xy| ≤∣∣∣[b, g]xy

∣∣∣. Define [b, g]S to be the operator

[b, g]Sxy =

[b, g]xy if d(x, y) ≤ S

0 otherwise

so that |(Wg)xy| ≤
∣∣∣[b, g]Sxy

∣∣∣. Observe that,

lim sup
Lip(g)→0

sup
d(x,y)≤S

|(Wg)xy| ≤ lim sup
Lip(g)→0

sup
d(x,y)≤S

∣∣∣[b, g]Sxy

∣∣∣
≤ ‖b‖ lim sup

Lip(g)→0

sup
d(x,y)≤S

∣∣∣g(x)− g(y)
∣∣∣ ≤ lim sup

Lip(g)→0

Lip(g) sup
d(x,y)≤S

d(x, y)

≤ lim sup
Lip(g)→0

Lip(g)S = 0.

Thus, |(Wg)xy| → 0 uniformly as Lip(g) → 0 so that limLip(g)→0 ‖Wg‖ = 0 by

Lemma 2.5. Since,

‖[b, g]‖ − ‖Wg‖ ≤ ‖[b, g]−Wg‖
(4.8)

≤ 3ε

=⇒ lim sup
Lip(g)→0

‖[b, g]‖ ≤ lim sup
Lip(g)→0

‖Wg‖+ 3ε,
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letting ε → 0 we have that ‖[b, g]‖ → 0 as Lip(g) → 0. Thus, given any

f ∈ V L∞ we have that ‖[b, f ]‖ql = lim supn→∞ ‖[b, fn]‖ = 0, and so b ∈ C∗u (X)

Therefore, since b was an arbitrary element in B, B = C∗u(X) and so all bounded

derivations on C∗u(X) are inner.

A Functional details

Proposition A.1. Let b ∈ B(`2(X)), (fj)j∈J and (vj)j∈J be as in Claim 3.17.1.

Consider the space `2(J, `2(X)); then,∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2(J,`2(X))

=

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2(X)

and

∥∥∥∥∥∥
∑
j∈J

vj

∥∥∥∥∥∥
`2(J,`2(X))

= ‖v‖`2(X)

Proof. We prove the first equality. The second is proved similarly. First, since

the supports of the fi’s are mutually disjoint for each x ∈ X there exists precisely

one j ∈ J such that (∑
i∈J

fibvi

)
(x) = (fjbvj)(x)

and if x 6∈ supp(fi) then (fibvi)x = 0. Thus,

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2(X)

=

∑
x∈X

∣∣∣∣∣∣
∑
j∈J

fjbvj

 (x)

∣∣∣∣∣∣
2


1/2

=

∑
i∈J

∑
x∈supp(fi)

|(fibvi)(x)|2
1/2

=

(∑
i∈J

∑
x∈X
|(fibvi)(x)|2

)1/2

=

∑
i∈J

(∑
x∈X
|(fibvi)(x)|2

)2/2
1/2

=

(∑
i∈J
‖fibvi‖2`2

)1/2

=

∑
j∈J

∥∥∥∥∥∥
(∑
i∈J

fibvi

)
j

∥∥∥∥∥∥
2

`2(X)


1/2

=

∥∥∥∥∥∥
∑
j∈J

fjbvj

∥∥∥∥∥∥
`2(J,`2(X))

as was to be shown.

Proposition A.2. Let T, S ∈ B(H) such that ‖T − S‖ > ε. Then there exists

unit vectors ξ, η ∈ H such that |〈(T − S)ξ, η〉| > ε.
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Proof. Since T − S ∈ B(H),

‖T − S‖ = sup
‖ζ‖=1

‖(T − S)ζ‖ = M > ε, for some M ∈ R.

Thus, there exists a ξ ∈ (H)1 such that

‖(T − S)ξ‖+ (M − ε) > sup
‖ζ‖=1

‖(T − S)ζ‖ = M,

so that ‖(T − S)ξ‖ > ε. Next, ‖(T − S)ξ‖ = L > ε for some L ∈ R. Thus,

|〈(T − S)ξ, (T − S)ξ〉| = L2 so that∣∣∣∣〈(T − S)ξ,
(T − S)ξ

‖(T − S)ξ‖

〉∣∣∣∣ =
L2

‖(T − S)ξ‖
= L > ε.

Taking η = (T−S)ξ
‖(T−S)ξ‖ we have that |〈(T − S)ξ, η〉| > ε for the unit vectors

ξ, η ∈ H.

Proposition A.3. Suppose that: (Pj)j∈X is an increasing net of finite rank

projections in `∞(X) converging strongly to the identity, (Sj)j∈X is a net in

B(H) converging weakly to S, and for the unit vectors ξ, η ∈ `2(X) we have

that |〈(T − S)ξ, η〉| > ε for some fixed ε. Then there exists a j0 such that

‖(TPj − Sj)ξ‖ > ε whenever j ≥ j0.

Proof. First note that, since Pj converges strongly to the identity, Pjξ → ξ in

norm. Thus,

lim
j∈X
|〈(TPj − Sj)ξ, η〉| =

∣∣∣∣ limj∈X 〈TPjξ, η〉 − lim
j∈X
〈Sjξ, η〉

∣∣∣∣ = |〈(T − S)ξ, η〉| = M > ε

for some M ∈ R. Hence, there exists a j0 such that for all j ≥ j0 we have that

|〈(TPj − Sj)ξ, η〉 − 〈(T − S)ξ, η〉| < M − ε

so that

M = |〈(T − S)ξ, η〉| < |〈(TPj − Sj)ξ, η〉|+ (M − ε) ⇐⇒ |〈(TPj − Sj)ξ, η〉| > ε

whenever j ≥ j0. Lastly, since ‖η‖ = 1 and by the Cauchy Schwarz inequality
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we have that,

‖(TPj − Sj)ξ‖2 = 〈(TPj − Sj)ξ, (TPj − Sj)ξ〉 〈η, η〉 ≥ |〈(TPj − Sj)ξ, η〉|2 > ε2

Thus, taking roots on both sides yields the desired result.
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